Questions to LLMs

Table of Contents

1. Introduction

After setting up the following prompt, the LLM replies with a welcome and some initial suggestions.

I am learning Machine Learning using the book ISLP. I am principally using the
Polars and sklearn libraries in Python, but also numpy, pandas, seaborn and matplotlib.

1.1. Welcome

Learning ML with ISLP using Polars, scikit-learn, NumPy, pandas, seaborn, and matplotlib is a great combo. Below is a lightweight workflow you can adapt. Tell me what chapter/topic you are on and I’ll tailor examples.

1.2. Questions for you

  • Which ISLP chapter/topic are you studying now?
  • Do you prefer code-first walkthroughs or short conceptual summaries?
  • Any dataset you want to use (ISLP datasets, your CSVs, or seaborn demos)?

1.3. Recommended workflow

  1. Load and clean data with Polars (fast, expressive).
  2. Convert to pandas/NumPy at the sklearn/seaborn boundary.
  3. Build sklearn Pipelines with preprocessing + model + CV.
  4. Plot diagnostics (convert to pandas for seaborn/matplotlib).
  5. Wrap steps into small reusable functions.

1.4. Environment setup

pip install polars scikit-learn pandas numpy seaborn matplotlib
# Optional: ISLP datasets (if using the Python ISLP package)
pip install ISLP

1.5. Data I/O with Polars

import polars as pl

# Read CSV
df_pl = pl.read_csv("data.csv")

# Basic schema and summary
print(df_pl.schema)
print(df_pl.describe())

# Select columns
feature_cols = ["X1", "X2", "X3"]
target_col = "y"
X_pl = df_pl.select(feature_cols)
y_pl = df_pl.select(target_col)

1.6. Converting between Polars, pandas, and NumPy

import pandas as pd
import numpy as np

# Polars -> pandas (keeps column names, good for sklearn ColumnTransformer)
df_pd = df_pl.to_pandas()

# Polars -> NumPy (good for estimators that only need arrays)
X_np = X_pl.to_numpy()
y_np = y_pl.to_numpy().ravel()

# pandas -> Polars
df_pl2 = pl.from_pandas(df_pd)

1.7. EDA and plotting (convert to pandas for seaborn)

import seaborn as sns
import matplotlib.pyplot as plt

df_pd = df_pl.to_pandas()

sns.pairplot(df_pd[feature_cols + [target_col]], diag_kind="hist")
plt.tight_layout()
plt.show()

sns.heatmap(df_pd[feature_cols + [target_col]].corr(), annot=True, cmap="vlag")
plt.tight_layout()
plt.show()

1.8. Regression example (Advertising: simple workflow)

Assume columns: TV, Radio, Newspaper, Sales.

import polars as pl
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_squared_error
import numpy as np

# Load
df_pl = pl.read_csv("Advertising.csv")

# Select features/target
num_cols = ["TV", "Radio", "Newspaper"]
cat_cols = []  # add any categorical cols here
target = "Sales"

# Convert to pandas for sklearn
df_pd = df_pl.to_pandas()

X = df_pd[num_cols + cat_cols]
y = df_pd[target]

# Train/test split
Xtr, Xte, ytr, yte = train_test_split(
    X, y, test_size=0.2, random_state=42
)

# Preprocess: scale numerics, one-hot categoricals
pre = ColumnTransformer(
    transformers=[
        ("num", StandardScaler(), num_cols),
        ("cat", OneHotEncoder(handle_unknown="ignore"), cat_cols),
    ],
    remainder="drop",
)

# Model pipeline
pipe = Pipeline(steps=[
    ("pre", pre),
    ("est", LinearRegression())
])

pipe.fit(Xtr, ytr)
pred = pipe.predict(Xte)

rmse = mean_squared_error(yte, pred, squared=False)
r2 = r2_score(yte, pred)

print(f"RMSE: {rmse:.3f}  R2: {r2:.3f}")

1.9. Cross-validation and model selection

from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import Ridge, Lasso

# Try Ridge and Lasso with a shared pipeline
pipe_rl = Pipeline(steps=[
    ("pre", pre),
    ("est", Ridge())
])

param_grid = {
    "est": [Ridge(), Lasso(max_iter=10000)],
    "est__alpha": np.logspace(-3, 3, 13),
}

cv = GridSearchCV(
    estimator=pipe_rl,
    param_grid=param_grid,
    scoring="neg_root_mean_squared_error",
    cv=5,
    n_jobs=-1,
)

cv.fit(Xtr, ytr)
print("Best params:", cv.best_params_)
print("CV RMSE:", -cv.best_score_)
print("Test RMSE:",
      mean_squared_error(yte, cv.best_estimator_.predict(Xte),
                         squared=False))

1.10. Classification example (Logistic Regression skeleton)

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, roc_auc_score

# Suppose: features in num_cols/cat_cols, target is binary 'y'
df_pl = pl.read_csv("binary.csv")
df_pd = df_pl.to_pandas()

num_cols = ["x1", "x2"]
cat_cols = ["grp"]
target = "y"

X = df_pd[num_cols + cat_cols]
y = df_pd[target]

Xtr, Xte, ytr, yte = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y
)

pre = ColumnTransformer(
    [("num", StandardScaler(), num_cols),
     ("cat", OneHotEncoder(handle_unknown="ignore"), cat_cols)]
)

clf = Pipeline([("pre", pre),
                ("est", LogisticRegression(max_iter=1000))])

clf.fit(Xtr, ytr)
proba = clf.predict_proba(Xte)[:, 1]
pred = (proba >= 0.5).astype(int)

print("Accuracy:", accuracy_score(yte, pred))
print("ROC AUC:", roc_auc_score(yte, proba))

1.11. Polars-native feature engineering tips

import polars as pl

df_pl = df_pl.with_columns([
    (pl.col("TV") * pl.col("Radio")).alias("TVxRadio"),
    pl.col("TV").pow(2).alias("TV2"),
    pl.when(pl.col("Radio") > 20).then(1).otherwise(0).alias("RadioHigh"),
])

# Then convert to pandas for sklearn
df_pd = df_pl.to_pandas()

1.12. Reproducibility

import numpy as np
import random
import os

def set_seed(seed: int = 42):
    random.seed(seed)
    np.random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)

set_seed(42)

1.13. Next steps

  • Tell me the exact ISLP section or exercise. I can provide a matching solution.
  • If you share a small sample of your dataset (cols/types), I’ll tailor code.
  • We can add diagnostic plots (residuals, leverage, ROC, calibration) next.

2. zip, csv

Using Polars, can I download one of the ISLP datasets and load it into a Polars dataframe? How about if it's a zip file?

2.1. Answer

Yes. You can download ISLP datasets over HTTP and load them directly into a Polars DataFrame. You can also handle zip files without writing to disk.

2.2. Example: load a CSV dataset into Polars

import requests
from io import BytesIO
import polars as pl

def pl_read_csv_from_url(url: str, **kwargs) -> pl.DataFrame:
    r = requests.get(url, timeout=30)
    r.raise_for_status()
    return pl.read_csv(BytesIO(r.content), **kwargs)

# Example: Auto.csv from the ISLP/ISLR site
auto_url = "https://www.statlearning.com/s/Auto.csv"
auto = pl_read_csv_from_url(auto_url)
print(auto.shape)
print(auto.head())

2.3. Example: load a CSV inside a zip file into Polars

import requests
from io import BytesIO
import zipfile
import polars as pl

def pl_read_csv_from_zip_url(zip_url: str, member: str,
                             **kwargs) -> pl.DataFrame:
    r = requests.get(zip_url, timeout=60)
    r.raise_for_status()
    with zipfile.ZipFile(BytesIO(r.content)) as zf:
        with zf.open(member) as f:
            return pl.read_csv(f, **kwargs)

# Example: list files in the zip, then load a chosen CSV
zip_url = "https://www.statlearning.com/s/NCI60.zip"

r = requests.get(zip_url, timeout=60)
r.raise_for_status()
with zipfile.ZipFile(BytesIO(r.content)) as zf:
    print(zf.namelist())  # Inspect members to pick the file you want

# Suppose the archive contains "NCI60_data.csv" and "NCI60_labs.csv"
nci_data = pl_read_csv_from_zip_url(zip_url, "NCI60_data.csv")
nci_labs = pl_read_csv_from_zip_url(zip_url, "NCI60_labs.csv")
print(nci_data.shape, nci_labs.shape)

2.4. Tips and notes

  • This approach avoids writing to disk by using BytesIO and zipfile.
  • You can pass Polars read_csv kwargs (e.g., has_header, dtypes, null_values).
  • Some ISLP zips contain non-CSV text (e.g., space separated). If needed:
    • Try pl.read_csv(..., separator=" ") when the separator is a single space.
    • If the file uses irregular whitespace, fall back to pandas, then convert:

      df = pd.read_csv(f, delim_whitespace=True); pl.from_pandas(df)
      
  • For Excel files, use pl.read_excel(...) Install extras:
pip install "polars[excel]"
  • For lazy mode, save locally and use pl.scan_csv("file.csv") for out-of-core work.

3. Files on WSL

I am using Ubuntu under WSL on Windows. How can I edit my Ubuntu files using Spyder?

3.1. Goal

Edit and run code on your Ubuntu (WSL) files with Spyder on Windows. Below are safe and practical options, from most recommended to least.

3.2. Option 1 (recommended): Run Spyder inside WSL

  • Best if you want Ubuntu packages/env and to work directly in Linux paths.
  • Windows 11 (WSLg):
    • Ensure WSLg is enabled (wsl –version shows a WSLg version).
    • In Ubuntu:
      • Create an env and install Spyder + libs, e.g. with conda:
        • conda create -n islp -y python=3.11 spyder numpy pandas polars \ scikit-learn seaborn matplotlib spyder-kernels
        • conda activate islp
        • spyder
      • Or with venv + pip:
        • python3 -m venv ~/.venvs/islp
        • source ~/.venvs/islp/bin/activate
        • pip install -U pip
        • pip install spyder spyder-kernels numpy pandas polars scikit-learn \ seaborn matplotlib
        • spyder
    • Spyder should open as a normal Windows window via WSLg.
  • Windows 10 (no WSLg):
    • Install an X server (e.g., VcXsrv) and start it (disable access control).
    • In Ubuntu:
      • export DISPLAY=$(grep -m1 nameserver /etc/resolv.conf \

        awk '{print $2}'):0
      • Launch Spyder as above.

Pros:

  • No path quirks, full Linux toolchain, correct file permissions.

Cons:

  • Needs WSLg or an X server.

3.3. Option 2: Keep your project on Windows; use Windows Spyder

  • Put your repo under Windows, e.g.:
    • C:\Users\you\projects\islp
  • Open and edit in Windows Spyder normally.
  • From Ubuntu, access the same files at:
    • /mnt/c/Users/you/projects/islp

Pros:

  • Safe and fast; no cross-OS file corruption risk.
  • Simple if you prefer Windows Spyder.

Cons:

  • Your Python runtime is Windows unless you connect to a WSL kernel (below).

3.4. Option 3: Edit Ubuntu files from Windows Spyder via \\wsl

  • In Spyder on Windows, open files directly under:

    \\wsl$\Ubuntu\home\your_user\your_project
    
  • You can also map that path as a network drive in Windows Explorer.

Important cautions:

  • Microsoft warns against modifying Linux files with Windows tools, as it can cause data loss or permission issues. Performance can also be worse.
  • Prefer Options 1 or 2 unless you accept the risks.

3.5. Option 4 (advanced): Windows Spyder editor + WSL Python kernel

  • Edit in Windows Spyder, but run code in your Ubuntu Python environment.
  • In Ubuntu (WSL), in your env:
    • pip/conda install spyder-kernels matching your Spyder major version.
    • Example:

      pip install "spyder-kernels>=2.4,<2.5"
      
    • Start a kernel:

      python -m spyder_kernels.console
      
    • Note the connection file path printed, e.g.:

      /home/you/.local/share/jupyter/runtime/kernel-XXXX.json
      
  • In Windows Spyder:
    • Consoles > Connect to an existing kernel.
    • Browse to the JSON over:

      \\wsl$\Ubuntu\home\you\.local\share\jupyter\runtime\kernel-XXXX.json
      
    • Set the working directory in Spyder (or in code) to your project, e.g.:
      • Linux path in WSL: /home/you/yourproject
      • Or Windows path mounted in WSL: /mnt/c/Users/you/projects/islp

Pros:

  • Use Windows Spyder UI; code runs in Ubuntu with its packages.
  • Avoids most file-permission issues if you keep sources on Windows (Option 2).

Cons:

  • A bit of setup; relies on networking/ports. If connect fails:
    • Start the kernel with:

      python -m spyder_kernels.console --ip=0.0.0.0
      
    • Then reconnect using the updated JSON, or ensure localhost forwarding.

3.6. Recommendations

  • For pure Ubuntu workflow: use Option 1 (Spyder inside WSL via WSLg).
  • For Windows UI with shared files: use Option 2; optionally add Option 4 to run on Ubuntu’s Python.
  • Avoid Option 3 unless necessary.

3.7. Tips

  • Keep one canonical project location to avoid path confusion.
  • If using git, store the repo on Windows (Option 2) to edit safely from both sides, or work entirely inside WSL (Option 1).
  • For plotting in WSL:
    • WSLg: works out of the box.
    • X server: set DISPLAY as shown above.
  • Match library versions across environments to avoid subtle differences.

4. Using Polars how to set the index to be a certain column? In Pandas you can use df.set_index

4.1. Short answer

Polars has no implicit index like pandas. You don't "setindex". Keep the column and use it explicitly (joins, filters, sorts). If you need a row number like pandas' RangeIndex, add it yourself.

4.2. Common patterns instead of an index

  • Add a monotonically increasing row id (RangeIndex-like):

    import polars as pl
    
    df = pl.DataFrame({"id": [3, 1, 2], "val": [10, 20, 30]})
    df = df.with_row_count(name="idx")  # idx: 0,1,2,...
    
  • Treat a column as the key for alignment (instead of index-based alignment):

    dim = pl.DataFrame({"id": [1, 2, 3], "name": ["a", "b", "c"]})
    out = df.join(dim, on="id", how="left")
    
  • Select/lookup by key values:

    row_2 = df.filter(pl.col("id") == 2)
    some = df.filter(pl.col("id").is_in([1, 3]))
    
  • Keep a stable order by a "logical index" column:

    df_sorted = df.sort("id")
    
  • Time-series operations use an explicit indexcolumn parameter:

    ts = pl.datetime_range(
        low=pl.datetime(2024, 1, 1, 0, 0),
        high=pl.datetime(2024, 1, 1, 0, 3),
        interval="1m",
        eager=True,
    )
    tdf = pl.DataFrame({"ts": ts, "val": [1, 2, 3, 4]})
    
    # Window by time using the "ts" column as index
    out = (
        tdf.sort("ts")
           .group_by_dynamic(index_column="ts", every="2m")
           .agg(pl.col("val").sum().alias("sum_val"))
    )
    
  • Asof/time-aware joins use a column too (not an index):

    left = pl.DataFrame({"ts": ts, "x": [1, 2, 3, 4]}).sort("ts")
    right = pl.DataFrame({"ts": ts, "y": [10, 20, 30, 40]}).sort("ts")
    joined = left.join_asof(right, on="ts")
    
  • Pivot uses an index argument, but it stays a column (not an index):

    df = pl.DataFrame(
        {"id": [1, 1, 2, 2], "col": ["A", "B", "A", "B"], "val": [5, 6, 7, 8]}
    )
    pv = df.pivot(values="val", index="id", columns="col")
    # index="id" is just a column in the result
    

4.3. If you really need a pandas-like index

Convert to pandas and set it:

pdf = df.to_pandas()
pdf = pdf.set_index("id")

5. How can I install the ISLP package in my Anaconda distribution of Python?

5.1. Installing ISLP in Anaconda

To install the ISLP package in your Anaconda distribution, you have a few options:

5.1.1. Using conda (recommended for Anaconda)

First, try installing via conda-forge:

conda install -c conda-forge islp

5.1.2. Using pip within Anaconda

If the conda installation doesn't work or the package isn't available, use pip within your conda environment:

pip install ISLP

5.1.3. Creating a dedicated environment (best practice)

It's recommended to create a separate conda environment for your ISLP work:

# Create a new environment
conda create -n islp_env python=3.11

# Activate the environment
conda activate islp_env

# Install ISLP and related packages
pip install ISLP
conda install -c conda-forge polars scikit-learn numpy pandas seaborn matplotlib

5.1.4. Verifying the installation

After installation, verify it works by opening Python and running:

import ISLP
print(ISLP.__version__)

5.1.5. Troubleshooting

If you encounter issues:

  • Ensure your Anaconda is up to date: conda update conda
  • Check that you're in the correct environment
  • Try updating pip: pip install --upgrade pip

*

Author: Breanndán Ó Nualláin <o@uva.nl>

Date: 2025-10-09 Thu 10:20