Questions to LLMs
Table of Contents
- 1. Introduction
- 1.1. Welcome
- 1.2. Questions for you
- 1.3. Recommended workflow
- 1.4. Environment setup
- 1.5. Data I/O with Polars
- 1.6. Converting between Polars, pandas, and NumPy
- 1.7. EDA and plotting (convert to pandas for seaborn)
- 1.8. Regression example (Advertising: simple workflow)
- 1.9. Cross-validation and model selection
- 1.10. Classification example (Logistic Regression skeleton)
- 1.11. Polars-native feature engineering tips
- 1.12. Reproducibility
- 1.13. Next steps
- 2. zip, csv
- 3. Files on WSL
- 4. Using Polars how to set the index to be a certain column? In Pandas you can use
df.set_index - 5. How can I install the ISLP package in my Anaconda distribution of Python?
1. Introduction
After setting up the following prompt, the LLM replies with a welcome and some initial suggestions.
I am learning Machine Learning using the book ISLP. I am principally using the Polars and sklearn libraries in Python, but also numpy, pandas, seaborn and matplotlib.
1.1. Welcome
Learning ML with ISLP using Polars, scikit-learn, NumPy, pandas, seaborn, and matplotlib is a great combo. Below is a lightweight workflow you can adapt. Tell me what chapter/topic you are on and I’ll tailor examples.
1.2. Questions for you
- Which ISLP chapter/topic are you studying now?
- Do you prefer code-first walkthroughs or short conceptual summaries?
- Any dataset you want to use (ISLP datasets, your CSVs, or seaborn demos)?
1.3. Recommended workflow
- Load and clean data with Polars (fast, expressive).
- Convert to pandas/NumPy at the sklearn/seaborn boundary.
- Build sklearn Pipelines with preprocessing + model + CV.
- Plot diagnostics (convert to pandas for seaborn/matplotlib).
- Wrap steps into small reusable functions.
1.4. Environment setup
pip install polars scikit-learn pandas numpy seaborn matplotlib # Optional: ISLP datasets (if using the Python ISLP package) pip install ISLP
1.5. Data I/O with Polars
import polars as pl # Read CSV df_pl = pl.read_csv("data.csv") # Basic schema and summary print(df_pl.schema) print(df_pl.describe()) # Select columns feature_cols = ["X1", "X2", "X3"] target_col = "y" X_pl = df_pl.select(feature_cols) y_pl = df_pl.select(target_col)
1.6. Converting between Polars, pandas, and NumPy
import pandas as pd import numpy as np # Polars -> pandas (keeps column names, good for sklearn ColumnTransformer) df_pd = df_pl.to_pandas() # Polars -> NumPy (good for estimators that only need arrays) X_np = X_pl.to_numpy() y_np = y_pl.to_numpy().ravel() # pandas -> Polars df_pl2 = pl.from_pandas(df_pd)
1.7. EDA and plotting (convert to pandas for seaborn)
import seaborn as sns import matplotlib.pyplot as plt df_pd = df_pl.to_pandas() sns.pairplot(df_pd[feature_cols + [target_col]], diag_kind="hist") plt.tight_layout() plt.show() sns.heatmap(df_pd[feature_cols + [target_col]].corr(), annot=True, cmap="vlag") plt.tight_layout() plt.show()
1.8. Regression example (Advertising: simple workflow)
Assume columns: TV, Radio, Newspaper, Sales.
import polars as pl from sklearn.model_selection import train_test_split from sklearn.compose import ColumnTransformer from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.pipeline import Pipeline from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score, mean_squared_error import numpy as np # Load df_pl = pl.read_csv("Advertising.csv") # Select features/target num_cols = ["TV", "Radio", "Newspaper"] cat_cols = [] # add any categorical cols here target = "Sales" # Convert to pandas for sklearn df_pd = df_pl.to_pandas() X = df_pd[num_cols + cat_cols] y = df_pd[target] # Train/test split Xtr, Xte, ytr, yte = train_test_split( X, y, test_size=0.2, random_state=42 ) # Preprocess: scale numerics, one-hot categoricals pre = ColumnTransformer( transformers=[ ("num", StandardScaler(), num_cols), ("cat", OneHotEncoder(handle_unknown="ignore"), cat_cols), ], remainder="drop", ) # Model pipeline pipe = Pipeline(steps=[ ("pre", pre), ("est", LinearRegression()) ]) pipe.fit(Xtr, ytr) pred = pipe.predict(Xte) rmse = mean_squared_error(yte, pred, squared=False) r2 = r2_score(yte, pred) print(f"RMSE: {rmse:.3f} R2: {r2:.3f}")
1.9. Cross-validation and model selection
from sklearn.model_selection import GridSearchCV from sklearn.linear_model import Ridge, Lasso # Try Ridge and Lasso with a shared pipeline pipe_rl = Pipeline(steps=[ ("pre", pre), ("est", Ridge()) ]) param_grid = { "est": [Ridge(), Lasso(max_iter=10000)], "est__alpha": np.logspace(-3, 3, 13), } cv = GridSearchCV( estimator=pipe_rl, param_grid=param_grid, scoring="neg_root_mean_squared_error", cv=5, n_jobs=-1, ) cv.fit(Xtr, ytr) print("Best params:", cv.best_params_) print("CV RMSE:", -cv.best_score_) print("Test RMSE:", mean_squared_error(yte, cv.best_estimator_.predict(Xte), squared=False))
1.10. Classification example (Logistic Regression skeleton)
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, roc_auc_score # Suppose: features in num_cols/cat_cols, target is binary 'y' df_pl = pl.read_csv("binary.csv") df_pd = df_pl.to_pandas() num_cols = ["x1", "x2"] cat_cols = ["grp"] target = "y" X = df_pd[num_cols + cat_cols] y = df_pd[target] Xtr, Xte, ytr, yte = train_test_split( X, y, test_size=0.2, random_state=42, stratify=y ) pre = ColumnTransformer( [("num", StandardScaler(), num_cols), ("cat", OneHotEncoder(handle_unknown="ignore"), cat_cols)] ) clf = Pipeline([("pre", pre), ("est", LogisticRegression(max_iter=1000))]) clf.fit(Xtr, ytr) proba = clf.predict_proba(Xte)[:, 1] pred = (proba >= 0.5).astype(int) print("Accuracy:", accuracy_score(yte, pred)) print("ROC AUC:", roc_auc_score(yte, proba))
1.11. Polars-native feature engineering tips
import polars as pl df_pl = df_pl.with_columns([ (pl.col("TV") * pl.col("Radio")).alias("TVxRadio"), pl.col("TV").pow(2).alias("TV2"), pl.when(pl.col("Radio") > 20).then(1).otherwise(0).alias("RadioHigh"), ]) # Then convert to pandas for sklearn df_pd = df_pl.to_pandas()
1.12. Reproducibility
import numpy as np import random import os def set_seed(seed: int = 42): random.seed(seed) np.random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) set_seed(42)
1.13. Next steps
- Tell me the exact ISLP section or exercise. I can provide a matching solution.
- If you share a small sample of your dataset (cols/types), I’ll tailor code.
- We can add diagnostic plots (residuals, leverage, ROC, calibration) next.
2. zip, csv
Using Polars, can I download one of the ISLP datasets and load it into a Polars dataframe? How about if it's a zip file?
2.1. Answer
Yes. You can download ISLP datasets over HTTP and load them directly into a Polars DataFrame. You can also handle zip files without writing to disk.
2.2. Example: load a CSV dataset into Polars
import requests from io import BytesIO import polars as pl def pl_read_csv_from_url(url: str, **kwargs) -> pl.DataFrame: r = requests.get(url, timeout=30) r.raise_for_status() return pl.read_csv(BytesIO(r.content), **kwargs) # Example: Auto.csv from the ISLP/ISLR site auto_url = "https://www.statlearning.com/s/Auto.csv" auto = pl_read_csv_from_url(auto_url) print(auto.shape) print(auto.head())
2.3. Example: load a CSV inside a zip file into Polars
import requests from io import BytesIO import zipfile import polars as pl def pl_read_csv_from_zip_url(zip_url: str, member: str, **kwargs) -> pl.DataFrame: r = requests.get(zip_url, timeout=60) r.raise_for_status() with zipfile.ZipFile(BytesIO(r.content)) as zf: with zf.open(member) as f: return pl.read_csv(f, **kwargs) # Example: list files in the zip, then load a chosen CSV zip_url = "https://www.statlearning.com/s/NCI60.zip" r = requests.get(zip_url, timeout=60) r.raise_for_status() with zipfile.ZipFile(BytesIO(r.content)) as zf: print(zf.namelist()) # Inspect members to pick the file you want # Suppose the archive contains "NCI60_data.csv" and "NCI60_labs.csv" nci_data = pl_read_csv_from_zip_url(zip_url, "NCI60_data.csv") nci_labs = pl_read_csv_from_zip_url(zip_url, "NCI60_labs.csv") print(nci_data.shape, nci_labs.shape)
2.4. Tips and notes
- This approach avoids writing to disk by using
BytesIOandzipfile. - You can pass Polars
read_csvkwargs(e.g.,has_header,dtypes,null_values). - Some ISLP zips contain non-CSV text (e.g., space separated). If needed:
- Try
pl.read_csv(..., separator=" ")when the separator is a single space. If the file uses irregular whitespace, fall back to pandas, then convert:
df = pd.read_csv(f, delim_whitespace=True); pl.from_pandas(df)
- Try
- For Excel files, use
pl.read_excel(...)Install extras:
pip install "polars[excel]"
- For lazy mode, save locally and use
pl.scan_csv("file.csv")for out-of-core work.
3. Files on WSL
I am using Ubuntu under WSL on Windows. How can I edit my Ubuntu files using Spyder?
3.1. Goal
Edit and run code on your Ubuntu (WSL) files with Spyder on Windows. Below are safe and practical options, from most recommended to least.
3.2. Option 1 (recommended): Run Spyder inside WSL
- Best if you want Ubuntu packages/env and to work directly in Linux paths.
- Windows 11 (WSLg):
- Ensure WSLg is enabled (wsl –version shows a WSLg version).
- In Ubuntu:
- Create an env and install Spyder + libs, e.g. with conda:
- conda create -n islp -y python=3.11 spyder numpy pandas polars \ scikit-learn seaborn matplotlib spyder-kernels
- conda activate islp
- spyder
- Or with venv + pip:
- python3 -m venv ~/.venvs/islp
- source ~/.venvs/islp/bin/activate
- pip install -U pip
- pip install spyder spyder-kernels numpy pandas polars scikit-learn \ seaborn matplotlib
- spyder
- Create an env and install Spyder + libs, e.g. with conda:
- Spyder should open as a normal Windows window via WSLg.
- Windows 10 (no WSLg):
- Install an X server (e.g., VcXsrv) and start it (disable access control).
- In Ubuntu:
export DISPLAY=$(grep -m1 nameserver /etc/resolv.conf \
awk '{print $2}'):0 - Launch Spyder as above.
Pros:
- No path quirks, full Linux toolchain, correct file permissions.
Cons:
- Needs WSLg or an X server.
3.3. Option 2: Keep your project on Windows; use Windows Spyder
- Put your repo under Windows, e.g.:
- C:\Users\you\projects\islp
- Open and edit in Windows Spyder normally.
- From Ubuntu, access the same files at:
- /mnt/c/Users/you/projects/islp
Pros:
- Safe and fast; no cross-OS file corruption risk.
- Simple if you prefer Windows Spyder.
Cons:
- Your Python runtime is Windows unless you connect to a WSL kernel (below).
3.4. Option 3: Edit Ubuntu files from Windows Spyder via \\wsl
In Spyder on Windows, open files directly under:
\\wsl$\Ubuntu\home\your_user\your_project
- You can also map that path as a network drive in Windows Explorer.
Important cautions:
- Microsoft warns against modifying Linux files with Windows tools, as it can cause data loss or permission issues. Performance can also be worse.
- Prefer Options 1 or 2 unless you accept the risks.
3.5. Option 4 (advanced): Windows Spyder editor + WSL Python kernel
- Edit in Windows Spyder, but run code in your Ubuntu Python environment.
- In Ubuntu (WSL), in your env:
- pip/conda install spyder-kernels matching your Spyder major version.
Example:
pip install "spyder-kernels>=2.4,<2.5"
Start a kernel:
python -m spyder_kernels.console
Note the connection file path printed, e.g.:
/home/you/.local/share/jupyter/runtime/kernel-XXXX.json
- In Windows Spyder:
- Consoles > Connect to an existing kernel.
Browse to the JSON over:
\\wsl$\Ubuntu\home\you\.local\share\jupyter\runtime\kernel-XXXX.json
- Set the working directory in Spyder (or in code) to your project, e.g.:
- Linux path in WSL: /home/you/yourproject
- Or Windows path mounted in WSL:
/mnt/c/Users/you/projects/islp
Pros:
- Use Windows Spyder UI; code runs in Ubuntu with its packages.
- Avoids most file-permission issues if you keep sources on Windows (Option 2).
Cons:
- A bit of setup; relies on networking/ports. If connect fails:
Start the kernel with:
python -m spyder_kernels.console --ip=0.0.0.0
- Then reconnect using the updated JSON, or ensure localhost forwarding.
3.6. Recommendations
- For pure Ubuntu workflow: use Option 1 (Spyder inside WSL via WSLg).
- For Windows UI with shared files: use Option 2; optionally add Option 4 to run on Ubuntu’s Python.
- Avoid Option 3 unless necessary.
3.7. Tips
- Keep one canonical project location to avoid path confusion.
- If using git, store the repo on Windows (Option 2) to edit safely from both sides, or work entirely inside WSL (Option 1).
- For plotting in WSL:
- WSLg: works out of the box.
- X server: set DISPLAY as shown above.
- Match library versions across environments to avoid subtle differences.
4. Using Polars how to set the index to be a certain column? In Pandas you can use df.set_index
4.1. Short answer
Polars has no implicit index like pandas. You don't "setindex". Keep the column and use it explicitly (joins, filters, sorts). If you need a row number like pandas' RangeIndex, add it yourself.
4.2. Common patterns instead of an index
Add a monotonically increasing row id (RangeIndex-like):
import polars as pl df = pl.DataFrame({"id": [3, 1, 2], "val": [10, 20, 30]}) df = df.with_row_count(name="idx") # idx: 0,1,2,...
Treat a column as the key for alignment (instead of index-based alignment):
dim = pl.DataFrame({"id": [1, 2, 3], "name": ["a", "b", "c"]}) out = df.join(dim, on="id", how="left")
Select/lookup by key values:
row_2 = df.filter(pl.col("id") == 2) some = df.filter(pl.col("id").is_in([1, 3]))
Keep a stable order by a "logical index" column:
df_sorted = df.sort("id")
Time-series operations use an explicit indexcolumn parameter:
ts = pl.datetime_range( low=pl.datetime(2024, 1, 1, 0, 0), high=pl.datetime(2024, 1, 1, 0, 3), interval="1m", eager=True, ) tdf = pl.DataFrame({"ts": ts, "val": [1, 2, 3, 4]}) # Window by time using the "ts" column as index out = ( tdf.sort("ts") .group_by_dynamic(index_column="ts", every="2m") .agg(pl.col("val").sum().alias("sum_val")) )
Asof/time-aware joins use a column too (not an index):
left = pl.DataFrame({"ts": ts, "x": [1, 2, 3, 4]}).sort("ts") right = pl.DataFrame({"ts": ts, "y": [10, 20, 30, 40]}).sort("ts") joined = left.join_asof(right, on="ts")
Pivot uses an index argument, but it stays a column (not an index):
df = pl.DataFrame( {"id": [1, 1, 2, 2], "col": ["A", "B", "A", "B"], "val": [5, 6, 7, 8]} ) pv = df.pivot(values="val", index="id", columns="col") # index="id" is just a column in the result
4.3. If you really need a pandas-like index
Convert to pandas and set it:
pdf = df.to_pandas() pdf = pdf.set_index("id")
5. How can I install the ISLP package in my Anaconda distribution of Python?
5.1. Installing ISLP in Anaconda
To install the ISLP package in your Anaconda distribution, you have a few options:
5.1.1. Using conda (recommended for Anaconda)
First, try installing via conda-forge:
conda install -c conda-forge islp
5.1.2. Using pip within Anaconda
If the conda installation doesn't work or the package isn't available, use pip within your conda environment:
pip install ISLP
5.1.3. Creating a dedicated environment (best practice)
It's recommended to create a separate conda environment for your ISLP work:
# Create a new environment conda create -n islp_env python=3.11 # Activate the environment conda activate islp_env # Install ISLP and related packages pip install ISLP conda install -c conda-forge polars scikit-learn numpy pandas seaborn matplotlib
5.1.4. Verifying the installation
After installation, verify it works by opening Python and running:
import ISLP print(ISLP.__version__)
5.1.5. Troubleshooting
If you encounter issues:
- Ensure your Anaconda is up to date:
conda update conda - Check that you're in the correct environment
- Try updating pip:
pip install --upgrade pip
*